博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
MySQL分页limit速度太慢优化方法
阅读量:6505 次
发布时间:2019-06-24

本文共 4775 字,大约阅读时间需要 15 分钟。

hot3.png

在mysql中limit可以实现快速分页,但是如果数据到了几百万时我们的limit必须优化才能有效的合理的实现分页了,否则可能卡死你的服务器哦。

   当一个表数据有几百万的数据的时候成了问题!

   如 * from table limit 0,10 这个没有问题 当 limit 200000,10 的时候数据读取就很慢,可以按照一下方法解决

第一页会很快

   PERCONA PERFORMANCE CONFERENCE 2009上,来自雅虎的几位工程师带来了一篇”EfficientPagination Using MySQL”的报告

   limit10000,20的意思扫描满足条件的10020行,扔掉前面的10000行,返回最后的20行,问题就在这里。

LIMIT 451350 , 30 扫描了45万多行,怪不得慢的都堵死了。

   但是

   limit 30 这样的语句仅仅扫描30行。

   那么如果我们之前记录了最大ID,就可以在这里做文章

   举个例子

日常分页SQL语句

select id,name,content from users order by id asc limit 100000,20

   扫描100020行

   如果记录了上次的最大ID

   select id,name,content from users where id>100073 order by id asc limit 20

扫描20行。

   总数据有500万左右

   以下例子 当时候 select * from wl_tagindex where byname=’f’ order by id limit 300000,10 执行时间是 3.21s

   优化后:

   select * from (

select id from wl_tagindex

where byname=’f’ order by id limit 300000,10

) a

left join wl_tagindex b on a.id=b.id

   执行时间为 0.11s 速度明显提升

   这里需要说明的是 我这里用到的字段是 byname ,id 需要把这两个字段做复合索引,否则的话效果提升不明显

   总结

   当一个数据库表过于庞大,LIMIT offset, length中的offset值过大,则SQL查询语句会非常缓慢,你需增加order by,并且order by字段需要建立索引。

如果使用子查询去优化LIMIT的话,则子查询必须是连续的,某种意义来讲,子查询不应该有where条件,where会过滤数据,使数据失去连续性。

如果你查询的记录比较大,并且数据传输量比较大,比如包含了text类型的field,则可以通过建立子查询。

SELECT id,title,content FROM items WHERE id IN (SELECT id FROM items ORDER BY id limit 900000, 10);

如果limit语句的offset较大,你可以通过传递pk键值来减小offset = 0,这个主键最好是int类型并且auto_increment

SELECT * FROM users WHERE uid > 456891 ORDER BY uid LIMIT 0, 10;

这条语句,大意如下:

SELECT * FROM users WHERE uid >=  (SELECT uid FROM users ORDER BY uid limit 895682, 1) limit 0, 10;

如果limit的offset值过大,用户也会翻页疲劳,你可以设置一个offset最大的,超过了可以另行处理,一般连续翻页过大,用户体验很差,则应该提供更优的用户体验给用户。

   limit 分页优化方法

   1.子查询优化法

先找出第一条数据,然后大于等于这条数据的id就是要获取的数据

缺点:数据必须是连续的,可以说不能有where条件,where条件会筛选数据,导致数据失去连续性

   实验下

    mysql> set profi=1;

Query OK, 0 rows affected (0.00 sec)

   mysql> select count(*) from Member;

+———-+

| count(*) |

+———-+

|   169566 |

+———-+

1 row in set (0.00 sec)

   mysql> pager grep !~-

PAGER set to ‘grep !~-‘

   mysql> select * from Member limit 10, 100;

100 rows in set (0.00 sec)

   mysql> select * from Member where MemberID >= (select MemberID from Member limit 10,1) limit 100;

100 rows in set (0.00 sec)

   mysql> select * from Member limit 1000, 100;

100 rows in set (0.01 sec)

   mysql> select * from Member where MemberID >= (select MemberID from Member limit 1000,1) limit 100;

100 rows in set (0.00 sec)

   mysql> select * from Member limit 100000, 100;

100 rows in set (0.10 sec)

   mysql> select * from Member where MemberID >= (select MemberID from Member limit 100000,1) limit 100;

100 rows in set (0.02 sec)

   mysql> nopager

PAGER set to stdout

   mysql> show profilesG

*************************** 1. row ***************************

Query_ID: 1

Duration: 0.00003300

  Query: select count(*) from Member

   *************************** 2. row ***************************

Query_ID: 2

Duration: 0.00167000

  Query: select * from Member limit 10, 100

*************************** 3. row ***************************

Query_ID: 3

Duration: 0.00112400

Duration: 0.00112400

  Query: select * from Member where MemberID >= (select MemberID from Member limit 10,1) limit 100

   *************************** 4. row ***************************

Query_ID: 4

Duration: 0.00263200

  Query: select * from Member limit 1000, 100

*************************** 5. row ***************************

Query_ID: 5

Duration: 0.00134000

  Query: select * from Member where MemberID >= (select MemberID from Member limit 1000,1) limit 100

   *************************** 6. row ***************************

Query_ID: 6

Duration: 0.09956700

  Query: select * from Member limit 100000, 100

*************************** 7. row ***************************

Query_ID: 7

Duration: 0.02447700

  Query: select * from Member where MemberID >= (select MemberID from Member limit 100000,1) limit 100

    从结果中可以得知,当偏移1000以上使用子查询法可以有效的提高性能。

   2.倒排表优化法

倒排表法类似建立索引,用一张表来维护页数,然后通过高效的连接得到数据

   缺点:只适合数据数固定的情况,数据不能删除,维护页表困难

   3.反向查找优化法

当偏移超过一半记录数的时候,先用排序,这样偏移就反转了

   缺点:order by优化比较麻烦,要增加索引,索引影响数据的修改效率,并且要知道总记录数

,偏移大于数据的一半

   引用

limit偏移算法:

正向查找: (当前页 - 1) * 页长度

反向查找: 总记录 - 当前页 * 页长度

   做下实验,看看性能如何

   总记录数:1,628,775

每页记录数: 40

总页数:1,628,775 / 40 = 40720

中间页数:40720 / 2 = 20360

   第21000页

正向查找SQL:

Sql代码

SELECT * FROM `abc` WHERE `BatchID` = 123 LIMIT 839960, 40

时间:1.8696 秒

   反向查找sql:

Sql代码

SELECT * FROM `abc` WHERE `BatchID` = 123 ORDER BY InputDate DESC LIMIT 788775, 40

时间:1.8336 秒

   第30000页

正向查找SQL:

Sql代码

   1.SELECT * FROM `abc` WHERE `BatchID` = 123 LIMIT 1199960, 40

SELECT * FROM `abc` WHERE `BatchID` = 123 LIMIT 1199960, 40

   时间:2.6493 秒

   反向查找sql:

Sql代码

1.SELECT * FROM `abc` WHERE `BatchID` = 123 ORDER BY InputDate DESC LIMIT 428775, 40

SELECT * FROM `abc` WHERE `BatchID` = 123 ORDER BY InputDate DESC LIMIT 428775, 40

    时间:1.0035 秒

   注意,反向查找的结果是是降序desc的,并且InputDate是记录的插入时间,也可以用主键联合索引,但是不方便。

 4.limit限制优化法

把limit偏移量限制低于某个数。。超过这个数等于没数据,我记得alibaba的dba说过他们是这样做的

 5.只查索引法

转载于:https://my.oschina.net/hensemlee/blog/1629053

你可能感兴趣的文章
高德开放平台推出LBS游戏行业解决方案提供专业地图平台能力支持
查看>>
追求绿色数据中心
查看>>
Web开发初学指南
查看>>
OpenStack Days China:华云数据CTO郑军分享OpenStack创新实践
查看>>
探寻光存储没落的真正原因
查看>>
高通64位ARMv8系列服务器芯片商标命名:Centriq
查看>>
中国人工智能学会通讯——融合经济学原理的个性化推荐 1.1 互联网经济系统的基本问题...
查看>>
盘点大数据商业智能的十大戒律
查看>>
戴尔为保护数据安全 推出新款服务器PowerEdge T30
查看>>
今年以来硅晶圆涨幅约达40%
查看>>
构建智能的新一代网络——专访Mellanox市场部副总裁 Gilad Shainer
查看>>
《数字视频和高清:算法和接口》一导读
查看>>
《中国人工智能学会通讯》——6.6 实体消歧技术研究
查看>>
如何在Windows查看端口占用情况及查杀进程
查看>>
云存储应用Upthere获7700万美元股权债务融资
查看>>
国家互联网应急中心何世平博士主题演讲
查看>>
洗茶,你误会了多少年?
查看>>
移动大数据“后市场”受青睐 亟需数据深度学习人才
查看>>
贵阳高新区力争打造“千亿级大数据园区”
查看>>
安防众筹不止于卖产品 思维拓展刺激消费
查看>>